

MDMAP HISTORY

- 2009-2012: development + testing
- 2011: Japan Tsunami
- 2012: Shoreline Field Guide, recruited partners, launched database
- 2016: Get Started Toolbox launched
- 2017 OC/CSIRO National Assessment
- 2018: Examining Observer Bias study
- 2019: Partner feedback

443 sites9,055 surveys21 US States + PR9 Countries

(OASST

COMMUNITY TEAM

Outcomes

Local

National

Analysis of Marine Debris Datasets

- Partners: Ocean Conservancy, CSIRO
- Analyzed US monitoring data
- Identified hotspots, drivers
- Compared methods

Seeing the signal through the noise

- Partner: COASST
- Number of people, search area, walking patterns, debris sizes

...and more

influence the data

Consistency is key

Examining influences on observed counts from shoreline surveys of marine debris

A report for the NOAA Marine Debris Program

Version 1.0

Hillary K. Burgess, Timothy T. Jones, Jacqueline K. Lindsey and Julia K. Parrish

June 30, 2020

ADAPTIVE MANAGEMENT

Examined detectability, influence of debris removal, back barrier, sources of bias Report, peer-reviewed publication forthcoming in collaboration with COASST

Analyzed 2012-16 data in partnership with Ocean Conservancy & CSIRO

Recommended improving consistency of methods across sites

Strategic plan

Published "An analysis of marine debris in the US" peer-reviewed publications forthcoming

Unified protocol

- Dedicated coordinator
- Upgraded database interface, API
- Data visualization
- Updated/upgraded toolbox
- Expanded training resources

One Protocol, Two Approaches

Citizen/
Community Science

- Volunteer, partner led
- Monthly
- Assess local trends

National Survey

- Contracted
- Every ~5 years
- Fill spatial gaps

SHORELINE DEBRIS MONITORING DECISION FRAMEWORK

- Asia Pacific Economic Cooperation (APEC) forum project
- Development of 'decision framework'
 - Tool to assist in shoreline debris monitoring
- Building off 2019 GESAMP guidelines

SHORELINE DEBRIS MONITORING DECISION FRAMEWORK

Are debris loads changing / was a management action effective? Do you need to know debris types? No What size of debris do you care about? What type of data is desired? **Photos** Qualitative Macro only Macro-Micro / condition scores Options: -?? Options: Options: Options: -NOAA MDMAP -CSIRO -BASMAA Rapid -UNEP (refer to page X for Trash more info) (refer to page X for Assessment more info) (refer to page X for more info)

DECISION FRAMEWORK: EXAMPLE SCENARIO

- A group of volunteers affiliated with a local community organization are concerned about debris loads, and want to start collecting data to present to city council.
- The decision framework walks the user through a series of questions:
 - Primary question to be addressed: types, hotspots, changes over time (effectiveness)
 - Resources available: # participants / frequency of survey events, funding, supplies
 - Debris units / data type: counts, weights, volumes, qualitative scores, photos
 - Debris size: macro, meso, micro, all?
 - Habitat: river/stream, shoreline (< 100m), shoreline (> 100m), etc.
 - Other requirements: centralized open database, training, mobile app, built-in visualizations
- Decision framework suggests the Marine Debris Tracker App

Satellite Surveys
Aerial Surveys
Unmanned Aircraft Systems
Surveys

Surface Surveys

- Vessel

Vessel-Towed

- Sonar
- Video
- Diver

Autonomous Underwater Vehicle

Surface Surveys ----- Vessel-Towed

CHALLENGES OF DETECTION

Low encounter rate

Varied debris size and composition

Debris visibility

Debris Identification

Resolution vs. Coverage

SATELLITE

Provides ability to access remote areas

Tsunami debris satellite detection

Mission definition, ongoing testing

- Identified nets in the Northwestern Hawaiian Islands
- Worked with NASA on new Planet Labs data sources and post-processing for debris assessment

MANNED AIRCRAFT

Most consistent and reliable method

New and promising automation for classification of marine debris

Used in Alaska to identify Japan Tsunami Marine Debris

Carried out an aerial shoreline survey of all 8 main Hawaiian Islands

Kaua'i

Number of Items

UNMANNED
AERIAL SYSTEMS

Unmanned Aerial Systems are an emerging tool for debris detection

Useful in remote, dangerous, or sensitive areas

Helpful in the Northwestern Hawaiian Islands

Integrating into cleanups and shoreline monitoring in grant projects

